Pore Size Distribution in Granular Material Microstructure
نویسندگان
چکیده
Pore scale modeling plays a key role in fluid flow through porous media and associated macroscale constitutive relationships. The polyhedral shape and effective local pore size within granular material microstructure are computed in this study by means of the Euclidean Distance Transform (EDT), a local maxima search (non-maximum suppression), and a segmentation process. Various synthetic packed particles are simulated and employed as comparative models during the computation of pore size distribution (PSD). Reconstructed un-sheared and sheared Ottawa 20-30 sand samples are used to compute PSD for non-trivial and non-spherical models.
منابع مشابه
Microstructure and Thermal Conductivity Modeling of Granular Nanoplatelet Assemblies
Consolidation and sintering of bismuth telluride nanoplatelets is a cost-effective method of manufacturing high thermoelectric figure-of-merit materials. A structural optimization method is employed here to study the effects of columnar structures formed by nanoplatelet composites on thermal transport. The initially sparse and random distribution of nanoplatelets is compacted into a jammed stat...
متن کاملQuantification of the heterogeneity of particle packings.
The microstructure of coagulated colloidal particles, for which the interparticle potential is described by the Derjaguin-Landau-Verweg-Overbeek theory, is strongly influenced by the particles' surface potential. Depending on its value, the resulting microstructures are either more "homogeneous" or more "heterogeneous," at equal volume fractions. An adequate quantification of a structure's degr...
متن کاملInfluence of Compaction Condition on the Microstructure of a Non-Plastic Glacial Till
The influence of compaction water content on the structure has been well known forclayey soils, but has never been studied for granular materials. In this paper the structure of a nonplastictill and the effect of compaction moisture is investigated by means of water retention curvestudy, scanning electron microscopy and mercury intrusion porosimetry tests. The results show thatwhen compacted on...
متن کاملThe degree of compression of spherical granular solids controls the evolution of microstructure and bond probability during compaction.
The effect of degree of compression on the evolution of tablet microstructure and bond probability during compression of granular solids has been studied. Microcrystalline cellulose pellets of low (about 11%) and of high (about 32%) porosity were used. Tablets were compacted at 50, 100 and 150 MPa applied pressures and the degree of compression and the tensile strength of the tablets determined...
متن کامل